Scattering Theory for Radial Nonlinear Schrödinger Equations on Hyperbolic Space
نویسنده
چکیده
We study the long time behavior of radial solutions to nonlinear Schrödinger equations on hyperbolic space. We show that the usual distinction between short range and long range nonlinearity is modified: the geometry of the hyperbolic space makes every power-like nonlinearity short range. The proofs rely on weighted Strichartz estimates, which imply Strichartz estimates for a broader family of admissible pairs, and on Morawetz type inequalities. The latter are established without symmetry assumptions. AMS Mathematics Subject Classification : 35Q55, 35B40, 35P25, 58J37.
منابع مشابه
A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملSmall Data Scattering for a System of Nonlinear Schrödinger Equations
We study the scattering theory for a system of nonlinear Schrödinger equations in space dimension n 3. In the case n 4 , existence of the scattering operator is proved in small data setting in the Sobolev space Hn/2−2. In the case n = 3 , a similar result is proved in the weighted L2 space 〈x〉−1/2L2 = FH−1/2 under the mass resonance condition. Mathematics subject classification (2010): 35Q55.
متن کاملLong Range Scattering for Nonlinear Schrödinger Equations in One and Two Space Dimensions
We study the scattering theory for the nonlinear Schrödinger equations with cubic and quadratic nonlinearities in one and two space dimensions, respectively. For example, the nonlinearities are sum of gauge invariant term and non-gauge invariant terms such as λ0|u|2u + λ1u + λ2uū + λ3ū in one dimensional case, where λ0 ∈ R and λ1, λ2, λ3 ∈ C. The scattering theory for these equations belongs to...
متن کاملGlobal existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds
We consider the nonlinear Schrödinger equation with a pure power repulsive nonlinearity on Schwarzschild manifolds. Equations of this type arise when a nonlinear wave equation on a Schwarzschild manifold is written in Hamiltonian form, cf. [2], [10]. For radial solutions with sufficiently localized initial data, we obtain global existence, L estimates, and the existence and asymptotic completen...
متن کاملSubcritical Scattering for Defocusing Nonlinear Schrödinger Equations
We survey some known results concerning the asymptotic behavior of solutions to defocusing nonlinear Schrödinger equations. In particular, we discuss the H1 scattering theory for intercritical NLS, as well as the scattering theory in weighted spaces for the mass-subcritical case. We also discuss an instance of modified scattering in the long-range case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007